
Централизованное тестирование по физике, 2018

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

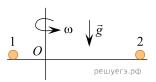
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты материальной точки от времени её движения. Начальная координата x_0 точки равна:

1) 12 M 2) 10 m

3) 8,0 m 4)6,0 M 5) 5,0 м

2. В таблице представлено изменение с течением времени координаты лыжника, движущегося с постоянным ускорением вдоль оси Ох.


Момент времени t , с		1	2	3	4	5
Координата x , м	3	0	-1	0	3	8

Проекция ускорения a_x лыжника на ось Ox равна:

1) 1 m/c^2 2) 2 m/c^2 3) 3 m/c^2

4) 4 m/c^2

3. Тонкий стержень длины l = 1,6 м с закрепленными на его концах небольшими бусинками 1 и 2 равномерно вращается в горизонтальной плоскости вокруг вертикальной оси, проходящей через точку O (см. рис.). Если модуль угловой скорости вращения стержня $\omega = 4.0$ рад/с, а модуль центростремительного ускорения первой бусинки

 $a_1 = 5,6$ м/с², то модуль центростремительного ускорения a_2 второй бусинки равен:

1) 0.80 m/c^2

2) 8.0 m/c^2 3) 12 m/c^2 4) 20 m/c^2 5) 25 m/c^2

4. Плотность вещества камня массы m = 20 кг составляет $\rho_1 = 2.5 \cdot 10^3$ кг/ 3 . Чтобы удержать камень в воде ($\rho_{2} = 1.0 \cdot 10^{3} \text{ кг/м}^{3}$), необходимо приложить силу, модуль F которой равен:

1) 0.30 kH

2) 0.24 kH

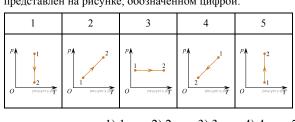
3) 0,20 kH

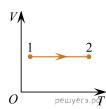
4) 0.12 kH

5) 0.10 kH

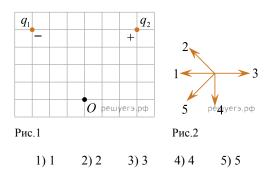
5. Цепь массы m = 0.80 кг и длины l = 2.0 м лежит на гладком горизонтальном столе. Минимальная работа A_{min} , которую необходимо совершить для того, чтобы поднять цепь за ее середину на высоту, при которой она не будет касаться стола, равна:

1) 4.0 Дж

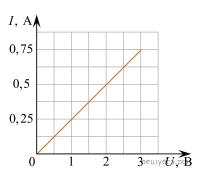

2) 8.0 Дж


3) 12 Дж

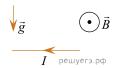
4) 16 Дж


5) 20 Дж

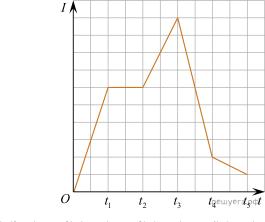
- 6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 1,0 м/с. Если период колебаний частиц шнура T = 0,90 с, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 1,8 м, равна:
 - 1) $\pi/2$ рад
- 2) π рад
- $3) 3\pi/2$ рад
- 4) 2π pag
- 5) 4π pag
- 7. В герметично закрытом сосуде находится идеальный газ, давление которого $p = 0.48 \cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа <0 $_{\kappa g}>$ = 400 м/с,то плотность ρ газа равна:
 - 1) $0,10 \text{ кг/м}^3$
- 2) 0,30 кг/м 3 3) 0,36 кг/м 3 5) 1,1 кг/м 3
- 4) 0.90 kg/m^3
- 8. На рисунке представлен график зависимости объема идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах (р, Т) представлен на рисунке, обозначенном цифрой:



- 2) 2 1) 1 3)3 4) 4 5) 5
- 9. В герметично закрытом сосуде находится аргон, количество вещества которого у = 7,00 моль. Если за некоторый промежуток времени внутренняя энергии газа изменилась на ΔU = -9,60 кДж, то изменение температуры Δt аргона равно:
 - 1) -165 °C
- 2) -110 °C
- 3) 110 °C
- 4) 165 °C
- 5) 248 °C
- **10.** Точечные заряды, модули которых $|q_1| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:


- **11.** Электрическая емкость плоского воздушного конденсатора $C=10~{\rm n\Phi}.$ Если пространство между обкладками конденсатора полностью заполнить эбонитом с диэлектрической проницаемостью $\varepsilon = 4,0,$ то электрическая емкость конденсатора:
 - 1) уменьшится на 2,5пФ
- 2) уменьшится на 7,5 пФ
- 3) уменьшится на 30 пФ
- 4) увеличится на 7,5 пФ
- 5) увеличится на 30 пФ

12. На рисунке представлен график зависимости силы тока, проходящего через железный ($\rho = 1,0 \cdot 10^{-7}$ Ом·м) проводник, от напряжения на нем. Если площадь поперечного сечения проводника S = 1,5 мм², то его длина l равна:


- 1) 15 м
- 2) 30 м
- 3) 40 м
- 4) 60 м
- 5) 90 м

13. Прямолинейный проводник массы m=18 г и длины l=60 см, расположенный горизонтально в однородном магнитном поле, находится в равновесии (см. рис.). Если сила тока, проходящего по проводнику, I=2,0 А, то модуль индукции B магнитного поля равен:

- 1) 0,15 Тл
- 2) 0,22 Tл
- 3) 0,54 Тл
- 4) 0,60 Тл
- 5) 0,67 Тл

14. На рисунке представлен график зависимости силы тока, проходящего по замкнутому проводящему контуру с постоянной индуктивностью, от времени. Интервал времени, в пределах которого значение модуля ЭДС самоиндукции $|\varepsilon|$ максимально:

- 1) $(0; t_1)$
- 2) $(t_1; t_2)$
- 3) $(t_2; t_3)$
- 4) $(t_3; t_4)$
- 5) $(t_4; t_5)$

15. Предмет находится на расстоянии d=10 см от главной плоскости тонкой линзы. Если изображение предмета мнимое и его линейный размер больше размера предмета в $\Gamma=3.0$ раза, то фокусное расстояние F линзы равно:

- 1) 13 см
- 2) 15 см
- 3) 17 см
- 4) 20 см
- 5) 23 см

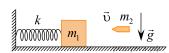
16. Дифракционную решетку, имеющую $N_1=200$ штр/мм освещают монохроматическим светом, падающим по нормали. Если дифракционную решетку заменить на другую, имеющую $N_2=500$ штр/мм , то отношение $\frac{\sin\theta_2}{\sin\theta_1}$ синуса угла, под которым виден максимум второго порядка во втором случае, к синусу угла, под которым виден максимум второго порядка в первом случае, равно:

- 1) 1,5 pasa
- 2) 2,0 pasa
- аза 3) 2,5 раза 5) 4,0 раза
- 4) 3,0 раза

17. Длина волны, соответствующая красной границе фотоэффекта для металла, $\lambda_{\rm K}=577$ нм. Если фотоэлектроны полностью задерживаются, когда разность потенциалов между электродами фотоэлемента $U_3=2,28$ В, то поверхность металла освещают светом с длиной волны λ , равной:

- 1) 280 нм
- 2) 319 нм
- 3) 332 нм
- 4) 540 нм
- 5) 550 нм

18. Заряд $q = 4.0 \cdot 10^{-18}$ Кл имеет ядро атома:


54,938	55,847	58,933	58,70	63,546	65,39	69,72	72,59	
25 <i>Mn</i>	26 <i>Fe</i>	27 <i>Co</i>	28 <i>Ni</i>	29 <i>Cu</i>	30 <i>Zn</i>	31 <i>Ga</i>	32 <i>Ge</i>	
марганец	железо	кобальт	никель	медь	цинк	галий	германий	
97,91	101,07	102,906	106,4	107,868	112,41	114,82	118,71	
43 <i>Tc</i>	44 <i>Ru</i>	45 <i>Rh</i>	46 <i>Pd</i>	47 <i>Ag</i>	48 <i>Cd</i>	49 <i>In</i>	50 <i>Sn</i>	
технеций	рутений	родий	палладий	серебро	кадмий	индий	р олово ф	
	1) ${}^{55}_{25}$ Mn 2) ${}^{56}_{26}$ Fe 3) ${}^{59}_{28}$ Ni 4) ${}^{59}_{27}$ Co 5) ${}^{65}_{30}$							
	1) $_{25}^{55}$ Mn	2) $_{26}^{56}$ F	Fe 3)	⁹ Ni 4	Ji 4) ⁵⁹ Co			

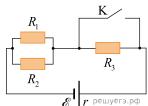
- **19.** Лифт начал опускаться с ускорением, модуль которого a=1,2 м/с². Когда модуль скорости движения достиг V=2,0 м/с, с потолка кабины лифта оторвался болт. Если высота кабины h=2,4 м, то модуль перемещения Δr болта относительно поверхности Земли за время его движения в лифте равен ... дм. Ответ округлите до целых.
- 20. Два груза, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых за-

висят от времени по закону: $F_1=At$ и $F_2=2At$, где A=1,60 H/с. Нить разрывается в момент времени t=10,0 с от начала движения, и модуль сил упругости нити в момент разрыва $F_{\rm упp}=25,0$ H. Если масса первого груза $m_1=900$ г, то масса m_2 второго груза равна... г.

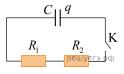
- **21.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=12 м. Если коэффициент трения $\mu=0,48$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- **22.** В брусок массы $m_1 = 2,0$ кг, лежавший на гладкой горизонтальной поверхности и прикрепленный к вертикальному упору легкой пружиной, попадает и застревает в нем пуля массы $m_2 = 0,01$ кг, летевшая со скоро-

стью, модуль которой $\upsilon=60$ м/с, направленной вдоль оси пружины (см. рис.). Если максимальное значение силы, которой пружина действует на упор в процессе возникших колебаний, $F_{\text{max}}=15,5$ H, то жесткость k пружины равна ... κ H/м. Ответ округлите до целого.

23. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=2,00 кг, а площадь поперечного сечения $S=10,0\,$ см 2 , содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100\,$ кПа. Если начальная температура газа и объем $T_1=300\,$ К и $V_1=4,00\,$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T=160\,$ К, то работа A, совершенная силой давления газа, равна ... Дж.


24. Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r=12 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда второго шарика до соприкосновения $|q_2|=2$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F=10 мкH, то модуль заряда $|q_1|$ первого шарика до соприкосновения равен ... нКл.

25. Сосуд, содержащий парафин (c=3,20~ кДж/(кг·К), $\lambda=150~$ кДж/кг), поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда парафин полностью расплавился. В таблице представлены результаты измерений температуры парафина.


Температура T , °C	24,0	34,0	44,0	54,0	54,0	 54,0
Время t , с	0,00	20,0	40,0	60,0	80	 153,8

Если мощность электроплитки P = 750 Вт, а коэффициент ее полезного действия $\eta = 64,0$ %, то масса m парафина равна... Γ . Ответ округлите до целого.

26. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=8,00\,$ Ом, $R_3=4,00\,$ Ом. По цепи в течение промежутка времени $t=25,0\,$ с проходит электрический ток. Если ЭДС источника тока $\varepsilon=18,0\,$ В, а его внутреннее сопротивление $r=2,00\,$ Ом, то полезная работа $A_{\rm полезн.}$ тока на внешнем участке цепи при замкнутом ключе K равна ... Дж.

- **27.** Квадратная проволочная рамка с длиной стороны a=5,0 см и сопротивлением проволоки R=7,5 мОм помещена в однородное магнитное поле так, что линии индукции перпендикулярны плоскости рамки. Если при исчезновении поля через поперечное сечение проволоки рамки пройдет заряд, модуль которого |q|=9,0 мКл, то модуль индукции B до исчезновения поля равен ... мТл.
- **28.** В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора и катушки с индуктивностью $L=16,0\,$ мГн, происходят свободные электромагнитные колебания с периодом T. Если амплитудное значение силы тока в контуре $I_{\rm max}=250\,$ мА, то энергия $W_{\rm L}$ магнитного поля катушки в момент времени t=T/12 от момента начала колебаний (подключения катушки к заряженному конденсатору) равна ... мкДж.
- **29.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n=1,47, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, $S=750~{\rm cm}^2$, то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **30.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1=6,0\,$ МОм и $R_2=3,0\,$ МОм. Если электрическая емкость конденсатора $C=1,0\,$ нФ, а его заряд $q=9,0\,$ мкКл, то количество теплоты Q_1 которое выделится в резисторе R_1 при полной разрядке конденсатора после замыкания ключа K, равно ... мДж.

